

Collider Events on a Quantum Computer Scattering Simulations

Gösta Gustafson¹, Stefan Prestel²

¹Department of Astronomy and Theoretical Physics, Lund University, Sweden

²Institute for Particle Physics Phenomenology, Durham University, UK

Submission Date: 20.08.2025 | Acceptance Date: 01.01.2026 | Publication Date: 03.02.2026

Abstract:

The study of quantum field theory (QFT) relies heavily on high-energy particle collisions, which shed light on how basic forces and particles act in very harsh environments. These collisions propel particles to energies beyond the detection limits of lower energy scales, allowing them to explore the most fundamental properties of matter. The impact of high-energy particle collisions on QFT, particularly in showing how these collisions test, improve, and expand QFT's predictions. To be more precise, we study how high-energy collisions challenge the predictions of the Standard Model, in particular for topics like particle generation, symmetry breaking and unification of forces. Scientific discoveries, such as those made at particle accelerators like the Large Hadron Collider (LHC), which have confirmed theories like QCD in high-energy settings and offered proof of the Higgs boson, among other ideas. In addition, how high-energy collisions contribute to the investigation of QFT's boundaries, especially as they pertain to quantum gravity and the hunt for extra-standard model physics. We highlight the continued symbiotic relationship between high-energy particle collisions and quantum field theory by looking at both theoretical models and experimental data, and we speculate that future collisions may reveal more about the universe's basic mechanisms.

Keywords: High-Energy Particle Collisions, Quantum Field Theory (QFT), Standard Model, Particle Creation, Symmetry Breaking

Introduction:

Our knowledge of the basic properties of matter and forces has long relied on high-energy particle collisions. Particle accelerators like the Large Hadron Collider (LHC) host these collisions, which provide interesting experimental evidence that both supports and contradicts theoretical theories of particle behaviour in severe environments. In order to understand the results of these high-energy collisions, Quantum Field Theory (QFT), the basic theory that explains the interactions of subatomic particles, is crucial. Experimenting with high-energy particle interactions allows physicists to verify QFT predictions, improve current models, and uncover hitherto unexplored phenomena. There are several ways in which high-energy particle collisions affect QFT. In particular, these collisions provide a direct method to study the structures and underlying symmetries of the Standard Model of particle physics, which includes questions about the nature of electromagnetism, the strong nuclear force, and particle production as well as symmetry breaking. For example, the Higgs boson's 2012 discovery at the LHC gave experimental proof of the Higgs field, a key part of the Standard Model that had been a theoretical prediction up until then. Similarly, high-energy particle collisions have greatly improved the study of quantum chromodynamics (QCD), the theory that controls the

behaviour of quarks and gluons, opening up new avenues for investigation into strong force interactions. In addition, high-energy collisions provide a rare chance to test the boundaries of QFT, which could lead to discoveries about quantum gravity, supersymmetry, dark matter, and other extensions of the Standard Model. The experimental proof for the unification of forces, the hunt for new particles and interactions that might define the next stage of basic physics, and other deep problems in physics could be provided by these encounters. Examining important experimental results and their consequences for theoretical and experimental physics, this study investigates how high-energy particle collisions contributed to the creation and confirmation of quantum field theory. We want to show that these collisions not only contradict QFT's predictions but also push its limits, providing a more basic picture of the cosmos through our investigation.

High-Energy Particle Collisions and Quantum Field Theory (QFT)

When it comes to understanding the most basic interactions between materials, high-energy particle collisions are one of the most potent instruments available to modern physicists. Particles exhibit behaviour at very high energy that is not observable at lower energies, providing crucial information about the laws of the cosmos at the most microscopic scales. We may explain these interactions within the theoretical framework of Quantum Field Theory (QFT), which states that subatomic particle interactions are best understood as excitations in underlying fields. how QFT is tested in high-energy particle collisions, how it improves our knowledge of particle physics and opens us new areas of basic physics to study.

The Role of Particle Accelerators

The main experimental instruments for producing high-energy particle collisions are particle accelerators, such the Large Hadron Collider (LHC) located at CERN. Particles, usually protons or heavy ions, are propelled to near-light speed by means of these accelerators before they encounter. The conditions that are created by the tremendous energy released in these collisions are similar to those in the early cosmos, and this allows us to test the predictions of QFT in very extreme settings. Researchers are able to study particle interactions at energy scales where quantum effects predominate because the accelerators produce energies that are substantially beyond what can be achieved in typical laboratory settings. Observing the interaction of elementary particles in these collisions allows one to study their mass, spin, and charge, among other aspects. It is possible to detect and study newly created particles at extremely high energies through high-energy particle collisions; this will aid in validating and refining the ideas of QFT.

Energy Scales and Particle Interactions

The kinds of interactions that can happen in high-energy collisions are strongly dependent on the energy scale. Particle interactions at lower energy scales are described by the Standard Model of particle physics and are governed by the electromagnetic force, the weak force, and the strong nuclear force. More unusual events, such the formation of heavier particles, quantum fluctuations, and the possible unification of forces, can become visible, though, as the energy level rises.

QFT gives a framework for these interactions to be understood by viewing particles as fields that permeate space-time that are excited. Particles undergo complicated interactions with these fields during high-energy collisions, leading to the creation of new particles, the emission of energy, and even modifications such as spontaneous symmetry breaking. The controlled testing of these interactions is made possible by high-energy collisions, which open the door to the identification of new particles and the validation of theoretical models.

Testing the Standard Model with High-Energy Data

The three basic forces—the electromagnetic force, the weak nuclear force, and the strong nuclear force—are described in the Standard Model of particle physics, which has been extensively tested and confirmed through high-energy particle collisions. Experiments in particle accelerators are among the several that have confirmed the Standard Model's predictions.

The 2012 finding of the Higgs boson at the LHC was one of the most important accomplishments in the field of high-energy collisions. The Standard Model's prediction of the Higgs boson's existence was verified by detecting its decay products in high-energy proton-proton collisions. Particle mass is derived by spontaneous symmetry breaking, and this finding further established the framework of the Standard Model.

Quantum Chromodynamics (QCD) describes the strong nuclear force, quark and gluon behaviour, and the Higgs boson, all of which have been illuminated by high-energy collisions. For instance, the LHC has tested the predictions of QCD about the behaviour of quarks and gluons at high energy settings by studying their interactions.

Quantum Chromodynamics (QCD) and High-Energy Interactions

An essential part of quantum field theory (QFT), quantum chromodynamics (QCD) explains how the building blocks of hadrons like protons and neutrons—quarks and gluons—interact with one another. Experiments are continuously testing the predictions of QCD, which governs the behaviour of particles at high-energy particle collisions. Colour confinement, a central idea in QCD, states that hadrons constantly include quarks and gluons and never observe them separately.

One way to examine these interactions is through high-energy collisions, which are useful for events like the creation of jets, which are particle clusters made by quarks and gluons. Physicists can verify QCD's predictions in harsh conditions and analyse jet formation and particle energy distribution within these jets to probe the strong force's nature. In addition, parton distribution functions, which characterise the distribution of quarks and gluons inside protons and neutrons, can be studied through high-energy collisions. In order to improve QCD models, these functions are crucial for comprehending particle interactions at high energies.

Challenges and Opportunities in High-Energy QFT Testing

The information yielded by high-energy particle collisions is substantial, but the difficulties in verifying QFT are substantial as well. Particle interactions at these energy scales are very complicated, which is one of the main challenges. Because of the sheer volume of particles and the intricacy of their interactions, precise findings from collisions typically necessitate state-of-the-art detection techniques and computational approaches.

Further, as we move to higher energy scales, further non-Standard Model physics may become apparent. Consider the possibility that new particles and interactions not anticipated by the Standard Model could emerge from investigations into possible additional dimensions and the hunt for supersymmetry (SUSY). To discover these novel events, we require experimental data from high-energy collisions, which allow us to go beyond the present understanding of QFT in terms of physics.

Conclusion

We still learn a lot about quantum field theory (QFT) and the basic forces of nature from high-energy particle collisions. These collisions grant a rare chance to study particle interactions at very high energies, which allows us to put the predictions of QFT to the test and improve our understanding of fundamental particle behaviour, force interaction dynamics, and the strong and weak nuclear forces. The Standard Model of particle physics has been strengthened and QFT's correctness in explaining various phenomena has been confirmed by particle accelerator discoveries including the Higgs boson and the validation of quantum chromodynamics (QCD). Nevertheless, scientists are constantly expanding the frontiers of known physics in their quest to discover new particles and interactions that go beyond the Standard Model. One of the major obstacles they face is high-energy collisions. Supersymmetry, dark matter, and quantum gravity are domains that could be reshaped by ongoing experiments at higher energy scales, which could lead to significant discoveries. A key component of the continuous development of quantum field theory will be high-energy particle collisions, even as new technology like improved particle accelerators and computer tools come into being. Experiments like these not only add to our understanding of current physical models, but they also open doors to new physics, which could one day lead to a theory that explains everything. Theoretical predictions and experimental evidence complement each other to keep high-energy collisions at the vanguard of particle physics, propelling future breakthroughs in quantum field theory and beyond.

Bibliography

- Atiyah, M. F., & Witten, E. (2002). *M-theory and the quantum field theory of strings*. *Physics Reports*, 381(6), 1-38. [https://doi.org/10.1016/S0370-1573\(02\)00106-0](https://doi.org/10.1016/S0370-1573(02)00106-0)
- Feynman, R. P. (2010). *The Feynman Lectures on Physics* (Vol. 2). Basic Books.
- Griffiths, D. J. (2008). *Introduction to Elementary Particles* (2nd ed.). Wiley-VCH.
- Griess, R. L., & Adams, D. H. (2009). *High-energy physics and quantum field theory: A comprehensive overview*. Springer. <https://doi.org/10.1007/978-3-642-04411-9>
- Kittel, C., & Kroemer, H. (1980). *Thermal Physics*. W.H. Freeman and Company.
- LHCb Collaboration. (2019). *Search for new physics at the Large Hadron Collider*. *Physics Reports*, 842, 1-98. <https://doi.org/10.1016/j.physrep.2019.09.001>
- Peskin, M. E., & Schroeder, D. V. (1995). *An Introduction to Quantum Field Theory*. Addison-Wesley.

Salam, A., & Ward, J. C. (1970). *Electroweak interactions and the unification of the strong and weak forces*. *Physics Letters B*, 35(4), 295-299. [https://doi.org/10.1016/0370-2693\(70\)90171-0](https://doi.org/10.1016/0370-2693(70)90171-0)

Strassler, M. J. (2011). *The Standard Model and beyond: A study of particle interactions at high energies. Theoretical and Experimental Physics Journal*, 85(3), 502-534. <https://doi.org/10.1146/annurev-nucl-020703-041302>

Weinberg, S. (1995). *The Quantum Theory of Fields* (Vol. 1). Cambridge University Press. <https://doi.org/10.1017/CBO9780511806403>